Announcements

1) HW a supplement due today
2) Quiz Thursday, Exam 1 next week

Second Order Equations
(Chapter 2)

Application: (mass-spring oscillator)
A mass $m($ in $4 g$, say) is attached to a spring and equipped with a "wheel" of radius b.

Picture

$$
\begin{gathered}
F_{\text {spring }}(t)=-k t \\
(t=\text { displacement })
\end{gathered}
$$

Not sophisticated enough to deal with large displacements, So we combine Newton's $\partial^{\text {nd }}$ law ($F=M a$) with
a friction law

$$
F_{\text {friction }}=-b v
$$

where v is the velocity and $b \geq 0$ is a damping coefficient.

Carelessly lump all other forces into an "external"
force function. Let y be the displacement as a function of time.
By Newton's law,

$$
\begin{aligned}
m \frac{d^{2} y}{d t^{2}} & =F_{\text {spring }}(t)+F_{\text {friction }}(t)+F_{\text {external }}(t) \\
& =-k y-b \frac{d y}{d t}+F_{\text {external }}(t)
\end{aligned}
$$

We get, replacing
$\frac{d y}{d t}, \frac{d^{2} y}{d t^{2}}$ with $y^{\prime}, y^{\prime \prime}$,
respectively,

$$
F_{\text {ext }}(t)=m y^{\prime \prime}+b y^{\prime}+k y
$$

Difference between Second-ordes and First-order Differential Equations

1) Initial conditions

In first-order equations, you need to specify $y\left(t_{0}\right)=y_{0}$ in order to solve for y completely. We also need to specify $y^{\prime}\left(t_{1}\right)=a$ for second order equations
2) Method of Solution: we don't know any!

Aside from simple differential equations that you can reduce to first order equations (ie. $k=0$ in our formula), we have no way of solving these equations.

Example 1: (som enumbers)
Suppose in the mass - spring oscillator, Fext $(t)=0, m=(k y$, $k=25$, and $b=10$. (an we solve for y ?

Equation:

$$
0=y^{\prime \prime}+10 y^{\prime}+25 y
$$

This might make you think about quadratic equations.

But how to replace the primes with squares, first powers, etc.
Guess: $y=e^{r t}$ for some real number r.

Check our guess!

Plug into the equation:

$$
\begin{aligned}
& y(t)=e^{r t}, y^{\prime}(t)=r e^{r t} \\
& y^{\prime \prime}(t)=r^{2} e^{r t}, \underset{\text { chair }}{\text { chain }}
\end{aligned}
$$

Substituting,

$$
\begin{aligned}
0 & =r^{2} e^{r t}+10 r e^{r t}+25 e^{r t} \\
& =e^{r t}\left(r^{2}+10 r+25\right)
\end{aligned}
$$

$e^{r t}>0$, so divide.

We get

$$
\begin{aligned}
0 & =r^{2}+10 r+25 \\
& =(r+5)^{3}
\end{aligned}
$$

So $r=-5$, and

$$
y=e^{-5 t}
$$

is
a solution to our problem.

Observation: (analogy to linear algebra)
If y_{1} and y_{2} are solutions to

$$
0=y^{\prime \prime}+a y^{\prime}+b y \text {, then }
$$

1) $C y_{1}$ is also a solution (in particular, $c=0$)
2) $y_{1}+y_{2}$ is also a solution

This says that for any constants c_{1}, c_{2} and solutions y_{1}, y_{2}, $y=c_{1} y_{1}+c_{2} y_{2}$ is also a solution. This is because our differential equation is linear.

More guessing: we should expect, since we take two derivatives, two "honestly" different solutions. Butwe only got $e^{-5 t}$ (and constant multiples) as a solution to our equation: Where is the other solution?

Another guess:

$$
y=t e^{-5 t}
$$

Check: equation

$$
\begin{aligned}
0 & =y^{\prime \prime}+10 y^{\prime}+25 y \\
y^{\prime}(t) & =e^{-5 t}-5 t e^{-5 t} \\
y^{\prime \prime}(t) & =-5 e^{-5 t}-5 e^{-5 t}+25 t e^{-5 t} \\
& =-10 e^{-5 t}+25 t e^{-5 t}
\end{aligned}
$$

(product rule)

Plugging in, we get

$$
\begin{aligned}
&-10 e^{-5 t}+25 t e^{-5 t}+ \\
& 10\left(-5 t e^{-5 t}+e^{-5 t}\right) \\
&+ 25\left(t e^{-5 t}\right) \rightarrow \text { pull out } e^{-5 t}
\end{aligned}
$$

leaving

$$
\begin{aligned}
& -10+25 t-50 t+10 \\
& +25 t=0
\end{aligned}
$$

We now have two
"honestly" different
solutions,

$$
\begin{aligned}
& y_{1}(t)=e^{-5 t} \text { and } \\
& y_{2}(t)=t e^{-5 t}
\end{aligned}
$$

What do we mean by "honestly"?

Q: How do we know these are all the solutions?

Linear Dependence: Two functions
f and g, defined on an interval
I, are said to be linearly dependent if there is a real number C such that

$$
f(x)=c g(x)
$$

for all X in I.

Two functions that are not linearly dependent are called linearly independent.

$$
\begin{aligned}
& y_{1}(t)=e^{-5 t} \text { and } \\
& y_{2}(t)=t e^{-5 t} \text { are }
\end{aligned}
$$

linearly independent!

